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Abstract. The Sznajd model, which describes opinion formation and social influence, is treated analytically
on a complete graph. We prove the existence of the phase transition in the original formulation of the
model, while for the Ochrombel modification we find smooth behaviour without transition. We calculate
the average time to reach the stationary state as well as the exponential tail of its probability distribution.
An analytical argument for the observed 1/n dependence in the distribution of votes in Brazilian elections
is provided.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

There is significant convergence between statistical
physics and mathematical sociology in approaches to their
respective fields [1]. Ising model, the single most studied
statistical physics model, finds its numerous applications
in sociophysics simulations. Conversely, sociologically in-
spired models pose new challenges to statistical physics.
We believe this is the case of the Sznajd model we are
studying here.

The model of Sznajd-Weron and Sznajd [2] was de-
signed to explain certain features of opinion dynamics.
The slogan “United we stand, divided we fall” lead to
simple dynamics, in which individuals placed on a lattice
(one-dimensional in the first version) can choose between
two opinions (political parties, products etc.) and in each
update step a pair of neighbours sharing common opinion
persuade their neighbours to join their opinion. Therefore,
it was noted that contrary to the Ising or voter [3] models,
information does not flow from the neighbourhood to the
selected spin, but conversely, it flows out from the selected
cluster to its neighbours.

The model initiated a surge of immediate inter-
est [4–25] and the results of numerical simulations can
be briefly summarised as follows. The results do not de-
pend much on the spatial dimensionality or on the type of
the neighbourhood selected [11]. In the case of q choices of
opinion, the system has q obvious homogeneous station-
ary (absorbing) states, where all individuals choose the
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same opinion. There is no way to go out of the homoge-
neous state, so it is an attractor of the dynamics. This
is reminiscent of a zero-temperature dynamics, which in
Ising model leads to rich behaviour [26]. However, in the
Sznajd model, the possible metastable states, like the “an-
tiferromagnetic” configuration have negligible probability
to occur, unless we introduce explicitly also an “antifer-
romagnetic” dynamic rule as it was used in the very first
formulation [2].

The case q = 2 was studied mostly, denoting the opin-
ions by Ising variables +1 and −1. The probability of hit-
ting the stationary state of all +1 (or, complementary,
all −1) was studied, depending on the initial fraction p
of the individuals choosing +1. Sharp transition was ob-
served at value p = 0.5 [11]; for p > 0.5 the probability
to reach eventually the state of all opinions +1 is close to
one, while for p < 0.5 it is negligible, which can be inter-
preted as a dynamical phase transition. The distribution
of times needed to reach the stationary state was mea-
sured, revealing a peak followed by relatively fast decay.
This means that the average hitting time is a well-defined
quantity [11].

It was also found in one and two-dimensional lattices
that the fraction of individuals who never changed opin-
ion decays as a power with time, similarly to Ising model.
While the exponent in one dimension agrees with the Ising
case, the two-dimensional Sznajd model gives different ex-
ponent than Ising model, indicating different dynamical
universality class [13]. Also the waiting time between two
subsequent opinion changes is distributed according to a
power-law [2].
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Among other studies, let us mention the influence of
advertising effects [18,19] and price formation [20]. Long-
range interactions were studied in [21].

In a very short but intriguing note [22] Ochrombel sug-
gested a drastic simplification of the Sznajd model. In the
Ochrombel version it is not necessary to have a cluster of
identical opinions. Any individual is capable to convince
her neighbours to select the same opinion. This model
was reported to share all essential features of the original
Sznajd model, only the phase transition in the probability
of hitting the state of all +1 at p = 0.5 is absent.

The Sznajd model was also used to model the election
process. There is recent empirical evidence from Brazilian
elections [27–29] that the distribution of votes per candi-
date follows a power-law, more specifically P (n) ∼ 1/n,
where n is the number of votes. This result was reproduced
in a study [4] based on Sznajd model on a scale-free net-
work [30–32].

The dynamics of elections was thoroughly investigated
by Galam [33–36], showing that majority rule applied on
sufficiently many hierarchical levels leads to a homoge-
neous “totalitarian” state with one opinion pervading the
whole system.

Other approaches to physical modelling of opinion dy-
namics were also investigated [37,38] and among them
especially the Axelrod model, which was found to have
rich behaviour from the statistical physics point of
view [39–41].

We should also mention the well studied voter
model [3,42–44], which is very similar in spirit to the
Sznajd model. Indeed, the relation of the two models was
studied e.g. in [45] and it seems that Sznajd model re-
duces to the voter model at least for certain setups (es-
pecially using the Ochrombel simplification on a complete
graph) while for others the voter model can be generalised
so that it includes the rules of Sznajd model as a special
case. In fact, similar analysis to that presented here was
performed for voter model, contact process and related
processes in [46]. The persistence properties of the voter
model on complete graph were studied in [42].

Very recently a “Majority rule” model, sharing some
features with Sznajd model, was introduced and stud-
ied in [47] and its generalisation to the Majority-Minority
model [48] gives in the mean-field approximation results
closely related to ours.

2 Formulation of the model
and its simplifications

2.1 General scheme

In the original formulation of the Sznajd model, the
“united we stand” principle is often stressed [2,11]. It
means that only a cluster of identical opinions can spread
the same opinion toward its neighbours. However, this
principle was relaxed in the Ochrombel simplification [22]
without qualitatively affecting many of the results (ex-
cept the presence of the phase transition). We will propose

some other simplifications here, supposing the results re-
main robust.

Let us have N agents, each of which can be in one of
q states (opinions) σ ∈ S. We may for example think of a
q-state Potts model variables. Each agent sits on a node
of a social network, and they can interact along the edges
with their nearest neighbours.

The opinion of the agent i is denoted σi. The state of
the system is described by the set of opinions of all the
agents, Σ = [σ1, σ2, ..., σN ].

The variable Σ(t) performs a discrete-time Markov
process, whose transition probabilities from time t to t+1
differ in various cases, which will be specified in the fol-
lowing.

2.2 Case I: two against one

The first case investigated, which we will sometimes call
“two against one”, generalises and simultaneously simpli-
fies the various versions introduced in [11]. The main dif-
ference is in the fact that we will change at maximum one
agent at each time step. This may not significantly change
the behaviour, as the various choices of neighbourhood
in [11] exhibit only little difference.

Our algorithm will iterate the following three steps.
First, choose randomly an agent i. Then, choose randomly
one of its neighbours, say j. If σi(t) �= σj(t), nothing hap-
pens. However, if σi(t) = σj(t), we will choose randomly
one of the common neighbours of both i and j, say k, and
set σk(t + 1) = σi(t). We may also write it schematically
as reactions AAB → AAA, BBA → BBB.

2.3 Case II: Ochrombel simplification

In this case, we do not need to have two neighbours in
the same state. Everybody can influence each of its neigh-
bours. We choose an agent i at random. Then, choose j
randomly among neighbours and set σj(t + 1) = σi(t).
Therefore, the process may be written as AB → AA,
BA → BB. In fact, on fully connected network the Ochro-
mbel simplification is equivalent to voter model, whose
dynamical properties were studied e.g. in [42].

As an obvious observation we can note that both in
case I and case II the uniform states, with all σi equal,
are stable under the dynamics. However, we can expect
variety of metastable states in the case I, in which there
are no pairs of neighbours in the same state, therefore the
dynamics does not proceed any further.

3 On a fully-connected network

We will approximate the complex social network by the
fully-connected network (the complete graph) of N nodes.
Here, any two agents are neighbours; in the case I we sim-
ply choose three agents i, j, k at random and in the case II
two agents i, j at random. Note that the order in which
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they are chosen matters. This makes our process differ-
ent e.g. from the majority [47] or majority-minority [48]
models, although on fully connected network the differ-
ence may consist only in rescaling certain variables.

We will call this setup a mean-field approximation in
the same sense as the Ising model on the complete graph
can be considered as an approximation for Ising model on
hypercubic lattice of high dimensionality. Of course this is
not a good approximation to the original one-dimensional
formulation of the Sznajd model [2], but we believe it is ap-
propriate for much more realistic studies of Sznajd model
on complex networks [4,16,23]. We refer the reader to Ap-
pendix A for a more formal definition of the Sznajd model
on an arbitrary graph.

In fully-connected network the state of the system
is fully described by the occupation numbers Nσ =∑N

i=1 δσiσ, or equivalently the densities nσ = Nσ/N , for
each opinion σ ∈ S. The dynamics of these occupation
numbers fully describes the evolution of the system. As
the total number of nodes is conserved, there are q − 1
independent dynamical variables.

Let us start with the case II (Ochrombel simplification)
with only two opinions, q = 2. The variable σ can assume
only two values, denoted σ = ±1 for convenience. Indeed,
we are effectively working with Ising spins. The state is
described by one dynamical variable only, which will be
taken as a “magnetisation”,

m =
N+ −N−

N
· (1)

In one step of the dynamics, three events can happen.
The magnetisation may remain constant or it can change
by ±2/N . The probabilities of these three events can be
easily calculated

Prob
{
m→ m+

2
N

}
=

1
4

(
1 −m2

) (
1 +

1
N − 1

)

Prob
{
m→ m− 2

N

}
=

1
4

(
1 −m2

) (
1 +

1
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)

Prob {m→ m} =
(

1
2

(
1 +m2

) − 1
N

)

×
(

1 +
1

N − 1

)
. (2)

Our objective is writing the master equation for the
probability density of the random variable m(t), which we
denote Pm. It can be found easily in the thermodynamic
limit N → ∞. Indeed, we find that the time should be
rescaled as

t = N2 τ (3)

in the thermodynamic limit. Then the probability density
evolves according to the partial differential equation

∂

∂τ
Pm(m, τ) =

∂2

∂m2

[
(1 −m2)Pm(m, τ)

]
. (4)

The latter equation describes in principle fully the evolu-
tion of the Sznajd model in Ochrombel simplification on

a complete graph. It has the form of a diffusion equation
with position-dependent diffusion constant.

Let us turn now to the case I (original Sznajd model),
again with q = 2. We may repeat step by step the consider-
ations made above for the case II. Namely, our dynamical
variable will be again the magnetisation m which may ei-
ther remain unchanged or change by ±2/N in one step.
For the probabilities of these events we can find formulae
analogous to (2)
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}
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)
4

(
1 +

1
N

)
(5)

where the terms of order 1/N2 are neglected. Note that
the probabilities of changes ±2/N are not symmetric, con-
trary to the previous case (II). This fact has all-important
consequences. We will see later that it is responsible for the
fact that the original Sznajd model exhibits phase tran-
sition, while in Ochrombel simplification the transition is
absent.

A more immediate consequence is that the time must
be rescaled differently, in order to get sensible thermody-
namic limit, namely

t = 2N τ. (6)

The second consequence is that the equation for Pm(m, τ)
contains first derivative with respect to m, representing a
pure drift in magnetisation:

∂

∂τ
Pm(m, τ) = − ∂

∂m

[
(1 −m2)mPm(m, τ)

]
. (7)

Contrary to the previous case (4) the diffusion term, con-
taining the second derivative in m, represents only the
finite-size correction to the drift term. However, this cor-
rection may dominate close to points m = ±1 and m = 0
where the drift velocity becomes zero.

Next case investigated will be the case II with arbitrary
value of q. Moreover, we will assume that the number of
opinions is large, q � 1. Let us define the distribution of
occupation numbers

D(n) =
N

q

q∑
σ=1

δ (n− nσ) (8)

where δ(x) = 1 for x = 0 and zero elsewhere. It would be
much more difficult to write the full dynamic equation for
D(n). Therefore, we use the approximation which replaces
the distributionD(n) by its configuration averagePn(n) =
〈D(n)〉. In the limit N → ∞ and q → ∞ and substituting
the variable x = 2n− 1 we arrive at the equation

∂

∂τ
Pn(x, τ) =

∂2

∂x2

[
(1 − x2)Pn(x, τ)

]
. (9)
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The time is rescaled again according to the equation (3).
We can see that the equations (4) and (9) have identical
form, although the interpretation of variables is different.
We can therefore solve the two cases simultaneously. This
will be performed in the next section.

4 Solution of the dynamics

4.1 Two against one: case I

The case I, q = 2 is described by the equation

∂

∂τ
P (x, τ) = − ∂

∂x

[
(1 − x2)xP (x, τ)

]
. (10)

It can be easily verified that the solution has the following
general form

P (x, τ) = [(1 − x2)x]−1 f

(
e−τ x√

1 − x2

)
(11)

for arbitrary function f(y). The form of the function f(y)
is given by initial conditions. For example if the initial
condition is a δ-function, it keeps the same form during
the evolution, only the location shifts in time. This way
we could in principle calculate, how long it takes to reach
the edges of the interval from given initial position. This
would be the time to reach the stationary state. However,
it comes out that the time needed blows up. The reason
comes from the infinite-size limit N → ∞. Indeed, very
close to the points x = ±1 the finite-size effects take over.

We can estimate the average time needed to reach the
stationary state in finite system by the following consider-
ation. In fact, the equation (10) describes the drift which
pushes the system toward the stationary state, but ne-
glects the effect of diffusion, which becomes important
at a distance ∼ 1/N from the points x = ±1. There-
fore, we must calculate the time necessary for the drift
to drive the system to the point ±(1 − 1/N). The initial
fraction p of opinions +1 corresponds to the initial condi-
tion x0 = 2p − 1 and from the formula (11) we have the
following estimate for the average time 〈τst〉 to reach the
stationary state

〈τst〉 
 − ln

(
|2p− 1|√
p(1 − p)

1√
N

)
. (12)

It is also possible to include the correction terms of
order O(1/N) into equation (10) and deduce the equation
for the average time to reach the absorbing state 〈τst〉(x0)
on condition that the process started at initial position
x0. Following the general scheme [49] we obtain a second-
order ordinary differential equation

(
1 +

3
N

)(
1 − x0

2
)
x0

d
dx0

〈τst〉 (x0)

+
1
N

(
1 − x0

2
) d2

dx0
2
〈τst〉 (x0) = −1. (13)

The solution of (13) is

〈τst〉 (x0) = N

∫ x0

−1

∫ 0

y

e
N+3

2 z2

1 − z2
dz e−

N+3
2 y2

dy. (14)

Indeed, for x0 not too close to either of the points x0 =
−1, 0, 1 (the distance must be large compared to 1/N)
we obtain from the formula (14) an approximate expres-
sion of the form given in (12). Another way to obtain the
same p dependence as in (12) is to omit the O(1/N) terms
in the equation (13) and solve the first-order differential
equation. In this case, however, we lose any information
about the dependence on N . We should also note that a
result essentially equivalent to equation (12) was obtained
also in [47].

It is rather interesting to observe that the determinis-
tic dynamics of Galam model [34,36] leads to a formula
very similar to (12), while the interpretation of the time
variable is totally different: in Galam model it represents
the number of hierarchical levels on which the majority
rule is iterated.

It would be desirable to calculate the full probability
distribution for the time to reach the stationary state τst
and not only the average. That is possible using again the
formalism of adjoint equation [49], when we introduce the
1/N corrections to equation (10) but the resulting partial
differential equation is difficult to solve explicitly. Instead,
we estimate the exponential tail of the distribution by a
simple consideration.

Indeed, after the drift had pushed the system to the
state in which there is only single spin −1 immersed in
a sea of all +1-s it finally comes into uniform stationary
state if the first pair of spins chosen is both +1 and the
third one is the single −1. This choice has probability

 1/N . Therefore, the relaxation time toward the uniform
state is trelax 
 N and using the scaling (6) we have for
the tail of the distribution

P (τst) ∼ exp(− τst
τrelax

), τst → ∞ (15)

with
τrelax 
 1

2
· (16)

The most important observation we can draw from the
solution (11) is the presence of the dynamic phase transi-
tion, as observed in numerical simulations. Indeed, start-
ing with any fixed positive magnetisation, we have initial
condition P (x, 0) = δ(x − x0), x0 > 0, and the drift ex-
pressed by equation (11) always take us to the state with
all agents having opinion +1, while from any state with
negative magnetisation the drift leads the system eventu-
ally to the state with all agents having opinion −1 and
the probability of ending in the state of all +1 is there-
fore P+ = θ(p − 1/2). The possible deviations from this
rule close to the zero magnetisation (i.e. p = 0.5) are
due to the finite size effects, which are neglected in (10).
The presence of the phase transition is also indicated by
the divergence of the average time to reach the stationary
state (12) for p→ 1/2.
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4.2 Ochrombel simplification: case II

The equation

∂

∂τ
P (x, τ) =

∂2

∂x2

[
(1 − x2)P (x, τ)

]
(17)

describes both the case II, q = 2 and II, q � 1, only the
interpretation of the variable x differ: in the former case it
corresponds to the magnetisation, while in the latter case
it is shifted percentage of votes. By solving equation (17)
we treat simultaneously both cases.

The equation of the form (17) was already studied in
variety of contexts, e.g. population genetics [50,51] or re-
action kinetics [52] and can be tackled by standard meth-
ods developed for Fokker-Planck equation.

Indeed, we look for the solution using the expan-
sion in eigenvectors. We can write (17) it in the form
∂
∂τ P (x, τ) = LP (x, τ) where the linear operator L acts as
(Lf)(x) = ∂2

∂x2

[
(1 − x2) f(x)

]
. We therefore need to find

the set of eigenvectors of L. Denoting Φc(x) the eigen-
vector corresponding to the eigenvalue −c, we have the
following equation

(1 − x2)Φ′′
c (x) − 4xΦ′

c(x) + (c− 2)Φc(x) = 0. (18)

The full solution of (17) can be then expanded as

P (x, τ) =
∑

c

Ace−cτ Φc(x) (19)

with coefficients Ac determined from the initial condition.
Important question to be settled prior to the attempt

for solution is, what is the appropriate space of functions
Φ(x). First, the interpretation of these functions as prob-
ability densities sets the requirement that it must be nor-
malisable:

∫
Φ(x) dx < ∞. Second, only the interval x ∈

[−1, 1] is relevant, so Φ(x) = 0 outside this interval. Fi-
nally, we should anticipate the possibility that δ-functions
appear in the solution, namely located at x = ±1, because
the uniform states, with all sites carrying the same spin
value, are stable under the dynamics.

We therefore look for the solution of (18) in the space of
distributions (i.e. linear functionals on sufficiently differ-
entiable functions) with support restricted to the interval
[−1, 1].

It is straightforward to find the eigenvectors corre-
sponding to eigenvalue c = 0, i.e. the stationary solutions
of equation (17). They are composed of δ-functions only. In
fact, the corresponding eigensubspace is two-dimensional
and the base vectors can be chosen as

Φ01 = δ(x − 1), Φ02 = δ(x+ 1). (20)

For c �= 0 we first decompose the solution in ordinary
function of x plus a pair of δ-functions, namely

Φc = φc+ δ(x− 1) + φc− δ(x+ 1) + φc(x) θ(x− 1) θ(x+ 1)
(21)

where φc+ and φc− are real numbers and φc(x) is a real
doubly differentiable function. Then, equation (18) trans-
lates into equation for φc(x)

(1 − x2)φ′′c (x) − 4xφ′c(x) + (c− 2)φc(x) = 0 (22)

accompanied by two other conditions

lim
x→±1

φc(x) = − c

2
φc±. (23)

The general solution of equation (22) exhibits be-
haviour φc(x) ∼ (1∓x)α at x→ ±1, where either α = 0 or
α = −1. However, the latter case should be excluded, as it
gives non-normalisable probability distribution. In fact it
is the condition of normalisability that determines all pos-
sible eigenvalues c. The solution of (22) with correct be-
haviour at x→ ±1 can be expressed in Gegenbauer poly-
nomials [52–54]. The eigenvalues are c = cl ≡ (l+1)(l+2)
for l = 0, 1, 2, ... An elementary solution and the table of
several lowest polynomials is presented in Appendix B.

It is important to note that for any eigenvalue c > 0
we have ∫

Φc(x) dx = 0
∫
xΦc(x) dx = 0. (24)

The consequence is that both
∫
P (x, τ)dx and∫

xP (x, τ)dx are independent of time. While the
first conservation law expresses simply the conservation
of probability, the second one is a non-trivial consequence
of the model dynamics. Mathematically it is related
to the fact that the eigenspace corresponding to zero
eigenvalue is two-dimensional.

Thus, we found the set of right eigenvectors of the op-
erator L. For practical solution we still need to establish
the coefficients Ac in equation (19). To this end we need
also the set of left eigenvectors of L, checking simulta-
neously that the set of left and right eigenvalues coin-
cide. First, we need to establish the adjoint operator to
L, defined by usual relation (Lf |g) = (f |LT g). While L
acts on the space of distributions, its adjoint LT acts on
the corresponding dual space, which is the space of suf-
ficiently differentiable functions. Straightforward algebra
gives (LT g)(x) = (1 − x2) g′′(x) which implies the follow-
ing equation for the left eigenvectors

(1 − x2)ψ′′
c (x) + c ψc(x) = 0. (25)

We find again that for c = 0 the eigensubspace is two-
dimensional. We can choose the basis vectors so that they
are mutually ortho-normal to the pair of right eigenvec-
tors (20), namely

ψ01 =
1
2
(1 + x), ψ02 =

1
2
(1 − x). (26)

The solutions of (25) for c > 0 with proper boundary
conditions are again polynomials presented in more detail
in Appendix B.

The coefficients in the solution (19) with initial condi-
tion P (x, 0) = P0(x) are then calculated as

Ac =
∫
P0(x)ψc(x) dx∫
φc(x)ψc(x) dx

· (27)
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From the solution (19) we can deduce an important
feature for the distribution of waiting times needed to
reach the stationary state. Indeed, if Pst(τ) is the proba-
bility density for ending at time τ in the stationary frozen
configuration with all agents in the same state, we can
express the probability that the stationary configuration
was not reached before time τ as

P>
st (τ) ≡

∫ ∞

τ

Pst(τ ′)dτ ′

= 1 − lim
ε→0+

(∫ −1+ε

−1−ε

+
∫ 1+ε

1−ε

)
P (x, τ)dx. (28)

We can see that only the δ-function components of the
eigenvectors Φc(x) in the expansion (19) contribute to
P>

st (τst). More explicitly, we find

P>
st (τ) =

∑
c>0

2Ac
φc(−1) + φc(1)

c
e−cτ · (29)

As the spectrum of eigenvalues is discrete, for long times
only the lowest non-zero c (equal to c0 = 2) is relevant.
Therefore, the distribution of waiting times will have an
exponential tail P>

st (τ) ∼ e−2τ , τ → ∞. For initial con-
dition P0(x) = δ(x − x0) we can easily compute also the
prefactor in the leading term for large τ . Indeed, from (27)
we get A2 and finally obtain

P>
st (τ) 
 6

4
(1 − x2

0) e−2τ , τ → ∞. (30)

As the functions φc(x) are odd for c = cl with odd l, we
should expect that the corrections to the formula (30) will
be governed by the second next eigenvalue c2 = 12. We will
see later how it can be checked in numerical simulations.

As in the case I the average time 〈τst〉 (x0) to reach
the absorbing state when starting at position x0 can be
obtained, using the general formalism [49], from the equa-
tion (

1 − x0
2
) d2

dx0
2
〈τst〉 (x0) = −1 (31)

which can be solved easily

〈τst〉 (x0) = −x0

2
ln

1 + x0

1 − x0
− 1

2
ln

1 − x0
2

4
(32)

(see also [52,53]). The method of adjoint equation [49,53]
can be used to calculate the distribution of times to reach
the absorbing state, when starting from initial position
at x = x0, yielding results equivalent to our direct cal-
culation. Indeed, inserting the initial condition P0(x) =
δ(x − x0) into (27) we can see that the expression (29)
represents an expansion in the eigenvectors ψc(x0) of the
adjoint operator LT taken at point x0.

Contrary to the case I, we do not observe any phase
transition here. This is due to the conservation of aver-
age magnetisation in the dynamics [47]. From this fact
it follows immediately that P+ = p. This result can
be confirmed by an explicit calculation. Starting with
fixed magnetisation x0 = 2p − 1, the initial condition

P (x, 0) = δ(x − x0) broadens under the diffusive dynam-
ics (17) and leaves always non-zero probability of ending in
either of the possible stationary states. We already noted
that

∫
xP (x, τ) dx is independent of time under the dy-

namics (17). Therefore, the asymptotic state is the follow-
ing combination of the eigenvectors (20) with c = 0

lim
τ→∞P (x, τ) =

1 − x0

2
δ(x+ 1) +

1 + x0

2
δ(x− 1) (33)

and the probability of ending in the state of all +1 is
therefore simply P+ = p.

4.3 Distribution of votes

As already stressed in Section 3, equation (17) describes
also the evolution of the distribution of votes in the case
of q � 1 parties. We will present an argument how our
results may explain the empirical data, suggesting the 1/n
law for the distribution of votes.

As stressed in the discussion following equation (23),
the time-independent solutions of equation (17) can be-
have either as 1 + x or (1 + x)−1 in the limit x → −1.
However, the latter case was excluded by the requirement
of normalisability of the probability density. On the other
hand, relaxing the normalisability condition, the functions

φ̃01(x) =
1

1 + x
(34)

φ̃02(x) =
1

1 − x
(35)

are solutions of (22) with eigenvalue c = 0. (Of course, any
linear combination of them is also solution with c = 0.)

How should be any of these additional solutions inter-
preted? The zero eigenvalue suggest that the function is
stationary in time. However, it is not normalisable, there-
fore this solution cannot be reached from any initial con-
dition. But if the distribution Pn(x, τ) is close to φ̃01(x)
(or φ̃02(x)) in some interval I of x, it is probable that it
Pn(x, τ) will remain close to (34) (or (35), respectively)
for certain period of time, while the interval I will grad-
ually shrink and eventually disappear. Therefore, we may
suggest (34) and (35) as a metastable states, or long-lived
transient states.

This may explain the observation from simulations
performed in [4]. In this work, the distribution of the type
1/n is obtained in a suitably chosen transient regime, in
certain range of n. As x = 2n − 1, the behaviour of (34)
at x → −1 corresponds precisely to 1/n behaviour for
small n.

A slightly more rigorous variant of the above argument
is also possible. Imagine now that the political system rep-
resented by the set of opinions S is not closed, but new
opinions may appear, replacing other ones which vanish.

Indeed, the current induced by the dynamics of case II
can be read off from equation (17)

j = − ∂

∂x
[(1 − x2)P (x, τ)] (36)
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Fig. 1. Probability of reaching the stationary state in time
larger than τ , for case I, q = 2, N = 2000. The values of initial
fraction p of opinions +1 are 0.1 (+) 0.2 (×) and 0.7 (�).

and by insertion of the solution (34) we deduce that there
is homogeneous flow j = +1 outward the value x = −1,
i.e. n = 0. We may interpret this flow as a consequence
of an external source placed somewhere close to the point
x = −1, i.e. n = 0. Such a source accounts for the influx
of new opinions, or new parties, into the system. It is very
reasonable to assume that the source is placed at very
small values of n, as new subjects are likely to gain little
support initially.

5 Comparison with numerical simulations

We performed numerical simulations of the Sznajd model
on fully connected network according to algorithms de-
scribed in Sections 2.2 (case I) and 2.3 (case II). The main
focus was on the dynamical properties, namely the distri-
bution of times needed to reach the homogeneous station-
ary state. We show in Figures 1 and 2 the probabilities
P>

st (τ) that the time τst to reach the stationary state is
larger that τ . We can clearly see that the probability de-
cays exponentially with τ in both cases I and II.

Let us discuss the case I first. Following the analyti-
cal expectation (15) we can fit the exponential tail of the
distribution as

P>
st (τ) 
 exp

(
−τ − 〈τst〉

τrelax

)
, τ → ∞. (37)

The results for 〈τst〉 can be seen in Figure 3, compared
with the analytical prediction of equation (12). Similarly
in Figure 4 we can compare the fitted relaxation time with
the analytical result. Both 〈τst〉 and τrelax agree satisfacto-
rily with the analytical predictions. The deviations around
the value p = 0.5 are due to finite size effects; the compari-
son of the results for system sizes N = 2000 and N = 4000
supports this interpretation. From equation (12) we can
see that 〈τst〉 diverges logarithmically for N → ∞. This
is confirmed by the simulation data which fall onto single
curve in Figure 3 for different system sizes.

τ

P
> st
(τ

)

43.532.521.510.50

1

0.1

0.01

0.001

Fig. 2. Probability of reaching the stationary state in time
larger than τ , for case II, q = 2, N = 2000. The values of initial
fraction p of opinions +1 are 0.1 (+) 0.2 (×) and 0.7 (�).
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Fig. 3. Average time of reaching the stationary state in dy-
namics of case I, q = 2. The system size is N = 2000 (+)
and N = 4000 (×). The line is the analytic prediction of equa-
tion (12)

Now let us turn to the case II. The equation (29) yields
the leading term in the tail of the distribution P>

st (τ) and
in principle also the corrections to it. As the functions
φc(x) are odd for c = cl with odd l, the next non-zero cor-
rection will come from the eigenvalue c2 = 12. Therefore,
we expect the behaviour

P>
st (τ) 
 exp

(
−τ − τ0

τr0

)
+ a1 exp(− τ

τr1
), τ → ∞ (38)

with

τr0 =
1
2
, τr1 =

1
12

· (39)

As in the initial condition P0(x) = δ(x − x0) we have
x0 = 2p−1, we can deduce from equation (30) the follow-
ing estimate

τ0 
 ln
√

6 p (1 − p)· (40)
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Fig. 4. Relaxation time toward the stationary state in dy-
namics of case I, q = 2. The system size is N = 2000 (+) and
N = 4000 (×). The horizontal line is the analytic prediction of
equation (16).

p

τ r
0
,τ

r1

10.80.60.40.20

0.6

0.4

0.2

0

p

τ 0

10.80.60.40.20

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

Fig. 5. The fitted parameter τ0 for reaching the stationary
state in dynamics of case II, q = 2. The system size is N =
2000. The line represents the formula (40). In the inset, the
fitted first two relaxation times τr0 and τr1 are shown. The
horizontal lines are corresponding analytical predictions from
equation (39).

We can see from Figure 5 that it corresponds well to the
numerical data. In the inset of Figure 5 we can also see
the fitted relaxation times τr0 and τr1. Also here the cor-
respondence with analytical prediction (39) is good.

6 Conclusions

We formulated a mean-field version of the Sznajd model
of opinion formation by putting it on a complete graph.
Solving the underlying diffusion equations we found ana-
lytical results for several dynamical properties, as well as
exact long-time asymptotics. The results differ substan-
tially in the two cases studied: first, the original Sznajd
model, where a cluster of identical opinions is necessary to

persuade others to join them, and second, the Ochrombel
simplification, where also isolated agent can persuade oth-
ers. Dynamical phase transition was found analytically in
the original Sznajd model, while in the Ochrombel version
it is absent. This finding agrees with previous numerical
results.

The approach to stationary state was the main con-
cern of our calculations. We found that the distribution of
times to reach the stationary state has an exponential tail
which we were able to calculate analytically. In the case
of Ochrombel simplification, we obtained also the correc-
tions and a formula which gives in principle the whole dis-
tribution. We compared the analytical results for the tail
(and in the Ochrombel case also for the first correction)
with numerical simulations and we found good agreement.
The method of adjoint equation enabled us to find ana-
lytically the average time to reach the stationary state, in
both cases.

We found also another signature of the phase transition
in the original Sznajd model, expressed by the divergence
of the average time to reach the stationary state. Con-
trary to the Ochrombel case, in the original Sznajd model
the average time needed for reaching the stationary state
blows up logarithmically with increasing system size. This
finding was also confirmed in our numerical simulations.

The analytical treatment provided an explanation of
the 1/n distribution of votes, documented in Brazilian
elections. We found that this behaviour corresponds to
long-lived transient state of the dynamics of the Sznajd
model with large number of possible opinions, or alterna-
tively to the dynamics of an open version of the Sznajd
model, where new opinions may continuously emerge.

This work was supported by the project No. 202/01/1091 of
the Grant Agency of the Czech Republic.

Appendix A: Sznajd model on an arbitrary
social network

Our system is composed of N agents placed on nodes of a
social network, represented by the graph Λ = (Γ,E) where
Γ is the set of nodes and E set of edges, i.e. unordered
pairs of nodes. For a node i ∈ Γ we denote Γi = {j ∈
Γ |(i, j) ∈ E} the set of neighbours of i.

The opinion of the agent i s denoted σi. The state of
the system is described by the set of opinions of all the
agents, Σ = [σ1, σ2, ..., σN ] ∈ SΓ . The variable Σ(t) per-
forms a discrete-time Markov process, defined as follows.

In the case I we iterate the following three steps. First,
choose i ∈ Γ at random. Then, choose j ∈ Γi randomly
among neighbours of i. If σi(t) �= σj(t), nothing happens.
However, if σi(t) = σj(t), we will choose randomly one
of the common neighbours k ∈ Γi ∩ Γj \ {i, j} and set
σk(t+ 1) = σi(t).

In the case II we choose i ∈ Γ at random. Then, choose
j ∈ Γi randomly among neighbours and set σj(t + 1) =
σi(t).
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If the graph is random and densely connected, we may
approximate it by the complete graph with N nodes, i.e.
for each pair of nodes i, j ∈ Γ there is an edge connecting
them, (i, j) ∈ E. It means that the set of neighbours of a
node i ∈ Γ is Γi = Γ \ {i}. This is a kind of a mean-field
approximation.

Appendix B: Finding the eigenvectors

We can look for the solution of the equation (22) in the
form of power series

φc(x) =
∞∑

l=0

bl x
l (B.1)

and find the recurrence relation for the coefficients

bl+2 =
(

1 − c

(l + 1)(l + 2)

)
bl. (B.2)

We should distinguish two cases. Either the sequence
of coefficients bl contains non-zero values for arbitrarily
large l, or it is truncated at some order and (B.1) becomes
a polynomial. In the former case the solution behaves as
φc(x) ∼ (1−x2)−1 at x→ ±1 and must be excluded. The
latter case is possible only if

c = cl ≡ (l + 1)(l+ 2) (B.3)

for some l ≥ 0. Moreover, in order to have a solution in
the form of a polynomial, we require that b1 = 0 if l in the
equation (B.3) is even, and b0 = 0 if l in the equation (B.3)
is odd. The following table lists the solution for several
lowest eigenvalues (taking b0 = 1 for even l and b1 = 1 for
odd l).

l cl φc(x)

0 2 1
1 6 x

2 12 1 − 5x2

3 20 x− 7
3
x3

4 30 1 − 14x2 + 21x4

. . .

. . .

. . . (B.4)

In fact, up to a multiplicative constant, the functions φc(x)
are Gegenbauer polynomials [53,54].

The same procedure can be used for finding the eigen-
vectors of the adjoint operator, solving equation (25). We
expand the function ψc(x) in power series

ψc(x) =
∞∑

l=0

dl x
l (B.5)

and find the recurrence relation for the coefficients

dl+2 =
(l − 1)l − c

(l + 1)(l + 2)
dl. (B.6)

Again we conclude that the only acceptable values of c are
given by condition c = cl ≡ (l + 1)(l + 2) for l = 0, 1, 2, ...
and in this case the eigenvectors are polynomials of order
l+2 in the variable x. The following table lists the solution
for lowest eigenvalues (taking d0 = 1 for even l and d1 = 1
for odd l).

l cl ψc(x)

0 2 1 − x2

1 6 x− x3

2 12 1 − 6x2 + 5x4

3 20 x− 10
3
x3 +

7
3
x5

4 30 1 − 15x2 + 35x4 − 21x6

. . .

. . .

. . . (B.7)

It is important to note that the set of right eigenvalues
coincides with the set of left eigenvalues, which proves
consistency of our approach.

Note that neither φc(x) nor ψc(x) are orthogonal
polynomials. Instead, they are mutually orthogonal, i.e.∫ 1

−1
φc(x)ψc′(x)dx = 0 for c �= c′. This is due to the fact

that the operator L is not self-adjoint.
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43. I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev.
Lett. 87, 045701 (2001)

44. M. Mobilia, Phys. Rev. Lett. 91, 028701 (2003)
45. L. Behera, F. Schweitzer, cond-mat/0306576
46. R. Dickman, R. Vidigal, J. Phys. A: Math. Gen. 35, 1147

(2002)
47. P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701

(2003)
48. M. Mobilia, S. Redner, cond-mat/0306061
49. C.W. Gardiner, Handbook of stochastic methods (Springer,

Berlin, 1985)
50. S. Wright, Proc. Natl. Acad. Sci. USA 31, 382 (1945)
51. D. Dorninger, H. Langer, Discrete Appl. Math. 6, 209

(1983)
52. D. ben-Avraham, D. Considine, P. Meakin, S. Redner, H.

Takayasu, J. Phys. A: Math. Gen. 23, 4297 (1990)
53. S. Redner, A guide to first-passage processes (Cambridge

University Press, Cambridge, 2001)
54. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series,

and Products, 5th edn. (Academic Press, 1994)


